1,945 research outputs found

    Entanglement in Ramsey interferometry, optical atomic clocks and trapped ions

    Get PDF
    This thesis describes new results on the entanglement of atomic spins in Ramsey interferometry, optical atomic clocks and trapped ions. It is divided into three parts: First, we investigate improvements to conventional Ramsey interferometry with entanglement and adding only rotations of the collective spin to adjust the signal and measurement directions. The geometric degrees of freedom, connected to the rotations, are analytically optimized for a large class of generalized Ramsey protocols to allow efficient optimization of all parameters. Besides a unification of existing approaches, the main result is that there is only one new protocol, where a previously unused double inversion is applied. Studies of the local sensitivity show that this protocol reaches the fundamental quantum Fisher information limit and is yet robust against errors during preparation and measurement. In the second section we investigate the conditions under which optical atomic clocks exhibit increased long-term stability when applying weakly entangled, spin squeezed states. We discuss the common case of an atomic clock with a single ensemble, typical Brownian frequency noise and finite dead time. Theoretical modelling of the servo loop allows quantitative predictions of the optimal stability for given values of dead time and laser noise, in very good agreement with numerical simulations of the closed feedback loop. The main result is that, even with the current most stable lasers, the clock stability can only be improved for ensembles below a critical atom number of about one thousand in optical Sr lattice clocks. Even with a future improvement of the laser performance by one order of magnitude, the critical atom number still remains below 100,000. In contrast, clocks based on smaller, non-scalable ensembles, such as ion clocks, can already benefit from squeezed states with current clock lasers. Thus the last section considers the robust generation of entanglement in ion traps. An error budget including relevant experimental error sources is calculated for state-of-the-art quantum gates, driven by oscillating microwave gradients in surface traps. Amplitude modulation of the driving fields is shown to efficiently counteract the current limitations from motional mode instability. The predicted increase of the gate quality was demonstrated by the group of C. Ospelkaus at PTB Braunschweig, who measured gates with errors as low as ~ 10^(-3). In a similar approach, interactions between spin and motion can also be generated by combining oscillating rf-fields with a static magnetic field gradient. Penning traps designed for precision spectroscopy already feature large magnetic field gradients at the edge of a magnetic bottle configuration. We present parameters and conditions under which laser-free coupling of spin and quantized motion for (anti-)protons is possible at these points, in a step towards quantum logic spectroscopy for (anti-)protons.Deutsche Forschungsgemeinschaft/Sonderforschungsbereich SFB 1227 DQ-mat/A06/E

    Ramsey interferometry with generalized one-axis twisting echoes

    Full text link
    We consider a large class of Ramsey interferometry protocols which are enhanced by squeezing and un-squeezing operations before and after a phase signal is imprinted on the collective spin of NN particles. We report an analytical optimization for any given particle number and strengths of (un-)squeezing. These results can be applied even when experimentally relevant decoherence processes during the squeezing and un-squeezing interactions are included. Noise between the two interactions is however not considered in this work. This provides a generalized characterization of squeezing echo protocols, recovering a number of known quantum metrological protocols as local sensitivity maxima, thereby proving their optimality. We discover a single new protocol. Its sensitivity enhancement relies on a double inversion of squeezing. In the general class of echo protocols, the newly found over-un-twisting protocol is singled out due to its Heisenberg scaling even at strong collective dephasing.Comment: 11+8 pages, 7 figures, comments welcome! ; accepted versio

    Quantum Algorithmic Readout in Multi-Ion Clocks

    Get PDF
    Optical clocks based on ensembles of trapped ions offer the perspective of record frequency uncertainty with good short-term stability. Most suitable atomic species lack closed transitions for fast detection such that the clock signal has to be read out indirectly through transferring the quantum state of clock ions to co-trapped logic ions by means of quantum logic operations. For ensembles of clock ions existing methods for quantum logic readout require a linear overhead in either time or the number of logic ions. Here we report a quantum algorithmic readout whose overhead scales logarithmically with the number of clock ions in both of these respects. We show that the readout algorithm can be implemented with a single application of a multi-species quantum gate, which we describe in detail for a crystal of Aluminum and Calcium ions.Comment: 4 pages + 7 pages appendix; 5 figures; v3: published versio

    Ramsey interferometry with generalized one-axis twisting echoes

    Get PDF
    We consider a large class of Ramsey interferometry protocols which are enhanced by squeezing and un-squeezing operations before and after a phase signal is imprinted on the collective spin of N particles. We report an analytical optimization for any given particle number and strengths of (un-)squeezing. These results can be applied even when experimentally relevant decoherence processes during the squeezing and un-squeezing interactions are included. Noise between the two interactions is however not considered in this work. This provides a generalized characterization of squeezing echo protocols, recovering a number of known quantum metrological protocols as local sensitivity maxima, thereby proving their optimality. We discover a single new protocol. Its sensitivity enhancement relies on a double inversion of squeezing. In the general class of echo protocols, the newly found over-un-twisting protocol is singled out due to its Heisenberg scaling even at strong collective dephasing

    Elementary laser-less quantum logic operations with (anti-)protons in Penning traps

    Get PDF
    Static magnetic field gradients superimposed on the electromagnetic trapping potential of a Penning trap can be used to implement laser-less spin-motion couplings that allow the realization of elementary quantum logic operations in the radio-frequency regime. An important scenario of practical interest is the application to gg-factor measurements with single (anti-)protons to test the fundamental charge, parity, time reversal (CPT) invariance as pursued in the BASE collaboration [Smorra et al., Eur. Phys. J. Spec. Top. 224, 3055-3108 (2015), Smorra et al., Nature 550, 371-374 (2017), Schneider et al., Science 358, 1081-1084 (2017)]. We discuss the classical and quantum behavior of a charged particle in a Penning trap with a superimposed magnetic field gradient. Using analytic and numerical calculations, we find that it is possible to carry out a SWAP gate between the spin and the motional qubit of a single (anti-)proton with high fidelity, provided the particle has been initialized in the motional ground state. We discuss the implications of our findings for the realization of quantum logic spectroscopy in this system.Comment: 10 pages, 4 figures, 1 table; published versio

    Photon Recoil Spectroscopy: Systematic Shifts and Nonclassical Enhancements

    Full text link
    In photon recoil spectroscopy, signals are extracted from recoils imparted by the spectroscopy light on the motion of trapped ions as demonstrated by C. Hempel et al., Nature Photonics 7, 630 (2013) and Y. Wan et al., Nature Communications 5, 3096 (2014). The method exploits the exquisite efficiency in the detection of phonons achievable in ion crystals, and is thus particularly suitable for species with broad non-cycling transitions where detection of fluorescence photons is impractical. Here, we develop a theoretical model for the description of photon recoil spectroscopy based on a Fokker-Planck equation for the Wigner function of the phonon mode. Our model correctly explains systematic shifts due to Doppler heating and cooling as observed in the experiment. Furthermore, we investigate quantum metrological schemes for enhancing the spectroscopic sensitivity based on the preparation and detection of nonclassical states of the phonon mode.Comment: 11+8 pages, 5+2 figures, submitted versio

    Prospects and challenges for squeezing-enhanced optical atomic clocks

    Get PDF
    Optical atomic clocks are a driving force for precision measurements due to the high accuracy and stability demonstrated in recent years. While further improvements to the stability have been envisioned by using entangled atoms, squeezing the quantum mechanical projection noise, evaluating the overall gain must incorporate essential features of an atomic clock. Here, we investigate the benefits of spin squeezed states for clocks operated with typical Brownian frequency noise-limited laser sources. Based on an analytic model of the closed servo-loop of an optical atomic clock, we report here quantitative predictions on the optimal clock stability for a given dead time and laser noise. Our analytic predictions are in good agreement with numerical simulations of the closed servo-loop. We find that for usual cyclic Ramsey interrogation of single atomic ensembles with dead time, even with the current most stable lasers spin squeezing can only improve the clock stability for ensembles below a critical atom number of about one thousand in an optical Sr lattice clock. Even with a future improvement of the laser performance by one order of magnitude the critical atom number still remains below 100,000. In contrast, clocks based on smaller, non-scalable ensembles, such as ion clocks, can already benefit from squeezed states with current clock lasers. © 2020, The Author(s)

    Comparative genome analysis: selection pressure on the Borrelia vls cassettes is essential for infectivity

    Get PDF
    BACKGROUND: At least three species of Borrelia burgdorferi sensu lato (Bbsl) cause tick-borne Lyme disease. Previous work including the genome analysis of B. burgdorferi B31 and B. garinii PBi suggested a highly variable plasmid part. The frequent occurrence of duplicated sequence stretches, the observed plasmid redundancy, as well as the mainly unknown function and variability of plasmid encoded genes rendered the relationships between plasmids within and between species largely unresolvable. RESULTS: To gain further insight into Borreliae genome properties we completed the plasmid sequences of B. garinii PBi, added the genome of a further species, B. afzelii PKo, to our analysis, and compared for both species the genomes of pathogenic and apathogenic strains. The core of all Bbsl genomes consists of the chromosome and two plasmids collinear between all species. We also found additional groups of plasmids, which share large parts of their sequences. This makes it very likely that these plasmids are relatively stable and share common ancestors before the diversification of Borrelia species. The analysis of the differences between B. garinii PBi and B. afzelii PKo genomes of low and high passages revealed that the loss of infectivity is accompanied in both species by a loss of similar genetic material. Whereas B. garinii PBi suffered only from the break-off of a plasmid end, B. afzelii PKo lost more material, probably an entire plasmid. In both cases the vls gene locus encoding for variable surface proteins is affected. CONCLUSION: The complete genome sequences of a B. garinii and a B. afzelii strain facilitate further comparative studies within the genus Borrellia. Our study shows that loss of infectivity can be traced back to only one single event in B. garinii PBi: the loss of the vls cassettes possibly due to error prone gene conversion. Similar albeit extended losses in B. afzelii PKo support the hypothesis that infectivity of Borrelia species depends heavily on the evasion from the host response

    Motional Fock states for quantum-enhanced amplitude and phase measurements with trapped ions

    Get PDF
    The quantum noise of the vacuum limits the achievable sensitivity of quantum sensors. In non-classical measurement schemes the noise can be reduced to overcome this limitation. However, schemes based on squeezed or Schrödinger cat states require alignment of the relative phase between the measured interaction and the non-classical quantum state. Here we present two measurement schemes on a trapped ion prepared in a motional Fock state for displacement and frequency metrology that are insensitive to this phase. The achieved statistical uncertainty is below the standard quantum limit set by quantum vacuum fluctuations, enabling applications in spectroscopy and mass measurements
    • …
    corecore